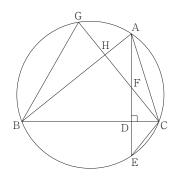
回 右の図のような円があり、異なる 3 点 A, B, C は円周上の点で、 \triangle ABC は鋭角三角形である。点 A から辺 BC に垂線をひき、その 交点を D とする。直線 AD と円との交点のうち、点 A と異なる点を E とし、点 C と点 E を結ぶ。線分 AD 上に CE = CF となる点 F を とる。直線 CF と円との交点のうち、点 C と異なる点を G とし、辺 AB と線分 CG との交点を G とする。また、点 G を結ぶ。 このとき、次のG



- (1) \triangle ACH \bigcirc \triangle GBH であることを証明せよ。
- (2) 点 A と点 G, 点 B と点 F をそれぞれ結ぶとき、 $\triangle ABF \equiv \triangle ABG$ であることを証明せよ。

【答】(1) \triangle ACH $\ge \triangle$ GBH において、対頂角だから、 \angle AHC $= \angle$ GHB \triangle Gに対する円周角だから、 \angle ACH $= \angle$ GBH よって、2組の角がそれぞれ等しいから、 \triangle ACH $\bigcirc \triangle$ GBH (2) \triangle CDE $\ge \triangle$ CDF において、仮定より、CE = CF、 \angle CDE $= \angle$ CDF = 90° また、CD は共通だから、直角三角形の斜辺と他の1辺がそれぞれ等しく、 \triangle CDE $= \triangle$ CDF よって、 \angle DCE $= \angle$ DCF……① \angle CED $= \angle$ CFD……② \triangle ABF $\ge \triangle$ ABG において、AB は共通……③ \triangle BEに対する円周角だから、 \triangle BAF $= \angle$ DCE……④ \triangle BGに対する円周角だから、 \triangle BAG $= \angle$ DCF……⑤ ①、④、⑤より、 \triangle BAF $= \angle$ BAG……⑥ また、対頂角だから、 \triangle AFG $= \angle$ CFD……⑦ \triangle ACに対する円周角だから、 \triangle AFG $= \angle$ CED……⑥ \triangle Cに対する円周角だから、 \triangle AFG $= \angle$ CED……⑥ ②、⑦、⑧ より、 \triangle AFG $= \angle$ AGF 2 $= \triangle$ AGF $= \triangle$ ABG $= \triangle$ ABG ③、⑥、⑨より、2組の辺とその間の角がそれぞれ等しいから、 \triangle ABF $= \triangle$ ABG